为科研工作者提供专业的图像设计服务和培训课程,帮助您创作出符合顶级期刊标准的科研图像作品。
展示 3 个最新的期刊封面作品
Biomass materials are of great interest in high‐energy rechargeable batteries due to their appealing merits of sustainability, environmental benefits, and more importantly, structural/compositional versatilities, abundant functional groups and many other unique physicochemical properties. In this perspective, we provide both overview and prospect on the contributions of biomass‐derived ecomaterials to battery component engineering including binders, separators, polymer electrolytes, electrode hosts, and functional interlayers, and so forth toward high‐stable lithium–ion batteries, lithium–sulfur batteries, lithium–oxygen batteries, and solid state lithium metal batteries. Furthermore, based on the multifunctionalities of bio‐based materials, the design protocols for battery components with desired properties are highlighted. This perspective affords fresh inspiration on the rational designs of biomass‐based materials for advanced lithium‐based batteries, as well as the sustainable development of advanced energy storage devices.
Background and Aims Hepatocellular carcinoma (HCC) is often accompanied by resistance to immunotherapies despite the presence of tumor‐infiltrating lymphocytes. We report that histone deacetylase 6 (HDAC6) represses interleukin‐17 (IL‐17)–producing helper T (TH17) cell pathogenicity and the antitumor immune response, dependent on its deacetylase activity. Approach and Results Adoptive transfer of HDAC6‐deficient TH17 cells impedes HCC growth, dependent on elevated IL‐17A, by enhancing the production of antitumor cytokine and cluster of differentiation 8–positive (CD8+) T cell–mediated antitumor responses. Intriguingly, HDAC6‐depleted T cells trigger programmed cell death protein 1 (PD‐1)–PD‐1 ligand 1 expression to achieve a strong synergistic effect to sensitize advanced HCC to an immune checkpoint blocker, while blockade of IL‐17A partially suppresses it. Mechanistically, HDAC6 limits TH17 pathogenicity and the antitumor effect through regulating forkhead box protein O1 (FoxO1). HDAC6 binds and deacetylates cytosolic FoxO1 at K242, which is required for its nuclear translocation and stabilization to repress retinoic acid–related orphan receptor gamma (RoRγt), the transcription factor of TH17 cell. This regulation of HDAC6 for murine and human TH17 cell is highly conserved. Conclusions These results demonstrate that targeting the cytosolic HDAC6–FoxO1 axis reprograms the pathogenicity and antitumor response of TH17 cells in HCC, with a pathogenicity‐driven responsiveness to facilitate immunotherapies
All-solid-state lithium batteries (ASLBs) are promising for the next generation energy storage system with critical safety. Among various candidates, thiophosphate-based electrolytes have shown great promise because of their high ionic conductivity. However, the narrow operation voltage and poor compatibility with high voltage cathode materials impede their application in the development of high energy ASLBs. In this work, we studied the failure mechanism of Li6PS5Cl at high voltage through in situ Raman spectra and investigated the stability with high-voltage LiNi1/3Mn1/3Co1/3O2 (NMC) cathode. With a facile wet chemical approach, we coated a thin layer of amorphous Li0.35La0.5Sr0.05TiO3 (LLSTO) with 15–20 nm at the interface between NMC and Li6PS5Cl. We studied different coating parameters and optimized the coating thickness of the interface layers. Meanwhile, we studied the effect of NMC dimension to the ASLBs performance. We further conducted the first-principles thermodynamic calculations to understand the electrochemical stability between Li6PS5Cl and carbon, NMC, LLSTO, NMC/LLSTO. Attributed to the high stability of Li6PS5Cl with NMC/LLSTO and outstanding ionic conductivity of the LLSTO and Li6PS5Cl, at room temperature, the ASLBs exhibit outstanding capacity of 107 mAh g–1 and keep stable for 850 cycles with a high capacity retention of 91.5% at C/3 and voltage window 2.5–4.0 V (vs Li–In).
Nature, Science, Cell 顶级期刊系列
0 个作品案例(暂无作品)

Nature 系列期刊封面作品
12 个作品案例

Science 系列期刊封面作品
5 个作品案例

Cell 系列期刊封面作品
11 个作品案例

JACS, ACS Nano, ACS Catalysis 等
193 个作品案例

Advanced Materials, Angewandte 等期刊
245 个作品案例
分子结构、细胞图像、实验装置
分子动力学、过程演示、机制解释
专业的科研图像设计培训体系
100
300
300
300
提供面对面的专业科研图像设计培训,涵盖从基础设计技巧到高级科研插图创作的完整课程体系。
开课时间:2026/4/24
线上培训
名额:0/10
开课时间:2026/9/14
线上培训
名额:0/10
立即联系获取免费咨询或预约培训课程